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The results of the whole calculation are the direction 
cosines of two rays which are treated symmetrically, 
i.e. reflected and reversed incident rays both leaving the 
crystal. 

(b) Alternative settings of  the axes 

If  data have been recorded using only one principal 
axis, it is immaterial whether this is a, b or c, as the 
axes and reflexion indices cart readily be renamed. If 
however data have been recorded using two different 
axes (say b and c) for the same crystal, it is incon- 
venient (and productive of error) to have to define the 
crystal on two different sets of orthogonal axes. It is 
preferable to calculate the ray direction cosines for 
reflexions recorded with b as principal axis ( Z ' - b )  
on the orthogonal axes X'  Y 'Z ' ,  using Wells's formulae 
and then to convert these cosines to those for the same 
rays on the axes X Y Z  (Z= e) used for definition of the 
crystal. 

This may readily be done if the direction cosines of 
X, Y, and Z are known on the axes X'  Y 'Z ' ,  as then 

cos ~ I X =  cos ~ I X '  c o s / X X ' +  c o s / I Y '  c o s / X Y '  
+ c o s / I Z '  cos /_XZ' ,  etc. 

These direction cosines may be determined in the 
following way. Define a set of unit vectors a, b, c along 
a*, b*, c*. Then unit vectors X, Y, Z along X, Y, Z may 
be found in terms of these: 

X = a  
Y = k a + b  
Z = ma + nb + p c .  

a and Y are orthogonal, so 

ka .  a + l b .  a = 0 ,  

and Y is a unit vector, so 

(ka + l b )  2 = 1 , 

i.e. 
k2a. a + 12b. b + 2kla.  b = 1, 

giving 

where 
k=-a.b/D, I=I/D, 

D=[I-(a. b)211/2 , 

for Y on the same side of a as b. 
Similarly, as Z is orthogonal to both a and b we get 

m=[(b, c) (a. b ) - c .  a]/DE 
n =-m/(a. b)-D(c, a)/f(a, b) 
p =D/E 

where 
E = a . b x e .  

If a .  b=0,  the expression for n is indeterminate and 
it is given by 

n=-p(b, c). 

In a similar way the components of the unit vectors 
X' ,Y ' ,Z '  may be found, for whichever permutation is 
required. Then if 

X = ala + a2b + a3c 
and 

X'b = la + b2b + b3c, 

the required cosine /_X 'X '  is given by 

X .  X '=alb la .  a+alb2a,  b+alb3a,  c + . . . ,  

and similarly for the remaining angles. 
These methods have been incorporated in a general 

absorption correction program written in Fortran for 
the Atlas Computer, using the method of De Meule- 
naer & Tompa (1965). 

I would like to thank Dr R.E. Gaskell for the solu- 
tion of the problem outlined in part (b). 
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The general analytic expression is given for the integral reflexion coefficient of X-rays from thick 
ideal absorbing crystals. 

Introduction 

In order to calculate the integral reflexion of X-rays 
from thick ideal crystals in the presence of an absorp- 
tion, one has to utilize, in accord with the Prins method, 

the numerical integration of the well-known formula 
for the reflexion coefficient, in which the absorption 
is taken into account by adding the imaginary terms 
to the atomic scattering amplitudes. However, a simple 
analytic expression of the integral reflexion can be 



A. M. A F A N A S ' E V  AND I. P. P E R S T N E V  521 

given, which is valid for arbitrary ratios between real 
and imaginary parts of the atomic scattering ampli- 
tudes. In fact, the problem was solved in our recent 
paper (Kagan, Afanas'ev & Perstnev, 1968), where the 
interaction of the resonant ),-quanta with crystals con- 
taining M6ssbauer nuclei has been studied. In that 
case, the role of absorption is of special importance 
owing to its relatively large value. 

Bearing in mind the interest of this problem for the 
X-ray physicist, we shall give here a detailed derivation 
of the general formula for the integral intensity directly 
applicable to the case of X-rays. 

Derivation of  general formulae 

The dynamical theory of X-ray diffraction gives the 
analytic form of the reflexion coefficient R(O) in the 
Bragg case both for non-absorbing and for absorbing 
crystals (see, e.g. Zachariasen, 1946; Laue, 1961). 

In the case of a thick crystal (at >> I) R(O) takes the 
form 

where 
M0 = 1 + 2s2(1 - q 2). 

Here we introduced the notations 

),o + I),n[ ImXo 
21/yo[ ~-~ I CI ~/i ~-~'~l ' 

2 f~iY-~l ICIml/~r,I 
q=  (4) 

)'0+ [),hi Imzo 

The quantity s characterizes the relative role of an ab- 
sorption and vanishes in non-absorbing crystals. The 
quantity q is mainly determined by the geometrical 
factors. 

(For crystals with inversion centre we have Z~ =Zn 
and thus 

S-- 
),0+l),nl I m x o  21/),019;ni ICIlmxn 

2~o17-~- ldznl  ' q - ),0+l),nl Imzo 

R(O) = C2)'ol)'nl Ixhl 2 
) ,0~- ½x0(),0 + I),nl) Jr V[),0~- ½z0(),0 + I),nl)] 2 -  C27ol)'nlxnz~ z" 

(1) 

Here, ct determines a deviation from the Bragg con- 
dition and is related to the angle 0 (at a ~  1) through 
the expression 

-~ s in  20B(OB-- O) ; 

Zn is the Fourier component of the polarizability per 
unit volume multiplied by 4zr, 

e 2 )'2 F h ,  
Xh= mc 2 ~ Vo 

where Fn is a structure factor. 
The remaining symbols are standard and correspond 

to those of Laue (1961). 
The integral intensity, 

R~= I~R(O)dO- 1 o o  

_ sin 20B S- R(ct)dct ' 

can be easily transformed as follows 

R~= sin 20---------B ~-~ ~ (2) 

where 

For the symmetric reflexion (I),hl =),o) we have 

Imxo  ICIImxn 
s - I C x n l '  q -  Imgo ) 

Using the substitution 
z 2 

M - M o = 2 S 2 ( 1 - q  2) l__z2 

and setting 
k=[1 +s2(1 _q2)]-x/2 

the integral (3) can be transformed as follows 

where 

8 ICxnl ]/[)'n'~n P(s,q), 
R~ = 3 sin-20B VI ),oZ~ 

31/1 - k  2 
P(s,q) = 2(1-q2)k3 (/1 + I2), 

I,= ~'[2-k2-k2z2-2 l / ( 1 - k  2) (1 
, I  

-k222)  ] 
Oo 

q2dz 
(1-  qEz2)l/i- z2 

(5) 

(6) 

M =  I),0=-½X0(),0 + !),~l)l 2 + 1[),0=-½Z0(),0 + l),nl)] 2 -  C~yol~nlxnx~l 
C2),01),hl IZnz~l 

Going in the integral (2) from the variable ~ to the 
variable M we have 

ICzhl R l - - -  
sin 20B 

1/o- 7nZh {,oo (M - I/M-2~s1 ) V~KSM=o 
dM, 

V ~ YoZ~ ~Mo M -  M0 + 2s 2 
(3) 
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I2= l~o[2-kZ-kZz2-2 ~(1-k 2) ( 1  k-2~) ] .o o 

1 _qZ 1 ] t- 
• , • x (l_z2)~/z - (-l_zZ)3/z, dz (7) ~ 

The integral Ix is directly expressed through the full 
elliptic integrals K and H of the first and the third 
type, respectively (Erdelyi, 1953). 

ee~ 

d,l ~5 

i1  = ~7g k22r  - 7~ 2 21/1~- q '~ [2q2- k2(1 + q2)] 

+2  Vl-kZ[(kZ-q2)II(-qZ,  k)-kZK(k)] . (8) 

Integrating Iz by parts we have 

Iz= l'o[2-kZ-kZzZ-2 V ~ - k  z) (1 Z-k-£Z2) ] 

1 - q  z l + 2 q  z 

where 

= ~-k2[(1-qZ)I3 + I4], 

1 - - k  2 I3=Ilo(1-~l_k2z2)d(-¢l:.~z-Z ~ ) 
¢1 k2Vf- --k2z2dz E(k) 

-Vl-kZK(k) 
and 

I'o l - k 2  1-q2+(l+2qZ)Z2-dz 
I4= 1 - k 2 z  2 1 V~__Z 2 

is expressed again in the elliptic integrals 

(9) 

(10) 

I4=(1-qZ) [ l /1-kzK(k)  - 2 ]  +( l+2qZ)  

x { VI-W- - k--5---[K(k)-E(k)]-4}. (11) 

Here, E is the full elliptic integral of the second type• 
Now, using the formulas (7)-(11) we get finally 

p(s,q)=(l_sZ_2qZsZ ) E(k) 3r~ s(l_2qZs2) 
k 4 

~p... 

• " 7 " . ' 7 .  

~ ~ m m m m  
o 6 ~ 6 6 6  

~ b ~ n o a a  
o 6 ~ 6 6 6  

° ~ 

o ~ 6 ~ 6 6 6  

o 6 ~ 6 ~ 6 6  

+ ks2(1 _ q2) [3(1 - qZs2)H(- qZ, k) 
- ( 2 -  s z -  2q2sZ)K(k)]. (12) 

Thus with the use of the introduced notations (4) and 
(5), the expressions (6) and (12) completely solve the 
problem of the integral reflexion from a thick absorb- 
ing single crystal, without any restriction on the ab- 
sorption power• 

o 6 6 6 ~ 6 6  
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Weak absorption case 

Using expressions (6) and (12) and tables of the el- 
liptic integrals one can easily calculate the integral in- 
tensity in every concrete situation. However, in most 
cases of practical interest the expression (12) can be 
simplified. As a rule, with the exception of some of 
the cases near an absorption edge, the X-ray absorp- 
tion is small, so that lmzo~lZol and, if the structure 
factor Fn is not accidently close to zero and if the 
polarization factor C is not too small, the quantity s 
is small compared with unity. 

In such a case the parameter k is close to unity (note 
that q< 1 always). Now using the expressions of the 
full elliptic integrals of the first and second type (Grad- 
stein & Ryzhik, 1963) and the expansion 

8 l - q )  
(1-q2)lI(-q2,k)~½1n l + q  1 - k  

_q_ l + q  ( 1 - k , ~  1) + In l ~ - q ,  . . .  

we find 

P(s,q)~_l - -3---~s(1-2q2s2)+ 3s 2 [1---~ q--~-2 In . . . .  

1+3q2 ( l - q ) 2  In l + q ]  
4 + 4 -i~-q-J " 

(13) 

s(1 +q)  

(14) 

The formula (14) has the simple analytic form and, for 
s < 0.2 (which occurs for most real situations) it gives 
an accuracy of more than one per cent. For s<0.05 

the main terms in (14) are 

3n 
P (s'q)~- I - -2t s 

and the integral reflexion takes the very simple form 

8 

Rl= 3 sin 20B \ r l  YoX~ I 

4 2y0 ~ Imzo • (15) 

This result is very close to the empirical result re- 
ceived by Hirsch & Ramachandran (1950), where in- 
stead of 3n/4 they have 2.4. Setting Imxo=O we get 
the well-known Darwin result. 

If s > 0.2 then one has to use the general expression 
(12) for P(s,q). We have tabulated the function P(s,q) 
and the results are given in Table 1. 

References 

ERDELYI, A. (1953). Higher Transcendental Functions. Vol. 
2. New York, Toronto, London: McGraw-Gill. 

GRADSTEIN, I. S. & RYZHIK, I. M. (1963). Tablici integralov, 
summ, riadov i proizvedenii, Moscow. 

HIRSCH, P. B. & RAMACHANDRAN, G. N. (1950). Acta Cryst. 
3, 165. 

KAGAN, Yo., AFANAS'EV, A. M. & PERSTNEV, I. P. (1968). 
JETP, 54, 1530. 

LAUE, M. (1948). Rdntgenstrahlinterferenzen. Leipzig: Aka- 
demische Verlagsg. 

ZACHARIASEN, W. H. (1946). Theory of X-ray Diffraction 
in Crystals. New York: John Wiley. 

Acta Cryst. (1969). A25, 523 

Representational Surfaces for Thermal Motion 

BY R. J. NELLY.S 

Department of  Natural Philosophy, University of  Edinburgh, Drummond Street, Edinburgh 8, Scotland 

(Received 23 December 1968) 

Representational surfaces for the mean-square displacement, and the root-mean-square displacement, 
are derived for atomic thermal motion in the harmonic approximation. It is shown how the form of 
these surfaces depends on the way in which 'mean-square displacement' is defined. It is concluded 
that to represent atomic thermal motion a different surface may be required from the second-order 
(ellipsoidal) surface usually presented in reports of crystal structure determinations. 

Introduction 

The purpose of this article is to clarify the meaning 
of the 'thermal vibration ellipsoids' presented graph- 
ically, stereographically, or parametrically in reports 
of crystal structure determinations to represent atomic 
thermal motion in the harmonic approximation. 

Provided the forces acting on any atom are linear 
in the relative displacements of the atoms (the har- 

monic approximation), it may be shown (Lipson & 
Cochran, 1966, p. 300) that the probability of the 
atomic centre lying within a volume element dxldxzdx3 
is p(xlxzx3)dxxdxzdx3, where 

p(XIXEX3) = 

[(2n)3/EUlUzU3] -1 exp [--(x~/2u~ + x~/2u~ + x~/2u~)] . (1) 

xl, x2, and x3 are displacements along orthogonal axes 


